Unit 8 Study Guide

Use counters to help.

1. Circle $\frac{5}{6}$ of the smiles.

2. Shade $\frac{3}{4}$ of the squares.

\square

\square
\square

3. Write at least 5 names in this name-collection box.

4. Write the missing fractions on the number line.

\qquad
5. Circle all the fractions that are less than $\frac{1}{2}$. Use your Fraction Cards to help.

$$
\begin{array}{lllllllll}
\frac{3}{8} & \frac{2}{3} & \frac{3}{4} & \frac{7}{8} & \frac{2}{4} & \frac{1}{3} & \frac{0}{4} & \frac{1}{4} & \frac{3}{3}
\end{array}
$$

5. In the number 54.93
the 5 means \qquad
the 4 means \qquad
the 9 means \qquad the 3 means \qquad
6. If I wanted an equal chance of picking a sphere or a cube out of the can I would put in \qquad spheres.

Solve. Draw a picture to show what you did.
Three people share 9 books.
8. a. How many books does each person get? \qquad books
b. What fraction of the books did each person get? \qquad
9. Fill in the blanks.
10. Use a straightedge. Draw the other half of the symmetric shape.
60 minutes $=$ \qquad hours

120 minutes $=$ \qquad hours

30 minutes = \qquad hour
\qquad minutes $=1 / 2$ hour
\qquad minutes $=1 / 4$ hour

Shade the circles to match the mixed number or fraction.
11.

Write another name for $\frac{10}{4}$. \qquad
12.

Write another name for $21 / 4$. \qquad
$2 \frac{1}{4}$
13. Cross out all the names that do not belong in this name-collection box. Then add one more name.
$\frac{2}{3}$ 3

$\frac{4}{6}$	$\frac{3}{4}$	$\frac{6}{9}$	$\frac{1}{3}$	$\frac{2}{4}$

two- halves three-fourths
two- thirds
14. Fill in the blanks. Use a clock to help.

60 minutes $=$ \qquad hour

90 minutes $=$ \qquad hours
\qquad minutes $=1 \frac{1}{4}$ hours
\qquad minutes $=1 / 3$ hour
\qquad minute $=1 / 60$ hour

5 minutes $=$ \qquad hour

Solve. Use coins to help.
15. Taylor's mom gave her 5 of a dollar.

Austin's mom gave him $\frac{3}{4}$ of a dollar.
Who received more money? \qquad
Explain how you got your answer. \qquad
\qquad
\qquad
16. If I wanted to pull out a sphere about half as often as a cube, I would put in:

